Michael E. Stone

Purpose

- Demonstrate a technique to more accurately reflect the impact weather may have on your construction project when you are planning the project
- Demonstrate how to properly account for the impact of adverse weather and seasonal differences

The Problem

- Contractors intuitively know that you can do more work during the summer months than winter months
- The problem has been convincing owners, mediators, arbitrators, and the courts that you can measure this difference using something better than a Ouija Board

The Problem

- Weather Impacts Construction
- Impact most noticeable on
- Heavy / Highway
- Site Work
- Utilities
- Industrial

Activities Affected Differently

- Not all activities are affected to the same extent on the same job
- Earthwork vs. Paving
- Hanging Steel vs. Electrical Rough-In
- Painting vs. Landscaping

The Problem

- Work delayed for whatever reason pushed from one season into another season will be impacted
- Favorably - (winter into summer)
- Unfavorably - (summer into winter)
- Exceptions noted (ice roads / offshore seasons for platforms \& pipelines)

The Problem

- Time allowed for projects seems to be decreasing despite increasing size and complexity of projects
- Increasing preference for Calendar Day contracts instead of Working Days
- Shifting of weather risk from Owner or Project to the Contractor

The Problem

- All months are not created equally
- A day of work planned for one calendar day in August could be equivalent to three calendar days in February
"No delay for weather shall be considered, except that for unusually severe weather."

So what is "Unusually Severe"?

Typical Contract Language

Common for owners to include a chart and note similar to the ones below on calendar day jobs:
"Contractor should anticipate normal inclement weather historically and plan their work to complete the project within the contract time. The average number of days with measurable precipitation are provided for the contractor's information only."

Average Days of Precipitation											
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
7	8	5	3	4	3	2	2	6	4	6	8

Weather is Predictable

- A review of historical information over many years provides evidence that weather can be predicted within a range that is acceptable for planning purposes

Data Available

- NOAA Weather Records
- Stations all across the nation
- Annual, Monthly, Daily, and even Hourly records are available for almost every station
- Records go back for years
- Data available for most stations back to at least WW-II, some for more than 100 years
- Weather Observations
- Temperature
- Cloud Cover
- Precipitation
- Wind
- Sunrise / Sunset (hours of daylight available)
- Cloud Cover
- \% of Sunshine

Other Data Available

- State DOT (work days by month)
- Local AGC office (rain days)
- Airport records (wind \& rain)
- State Meteorologist
- US Dept of Agriculture
- State departments of agriculture
- Parks \& Wildlife / Game \& Fish Records
- Your Own Company's History of Days and Hours Worked by Month

)
 PRIMAVERA ${ }^{\circ} \mathbf{2 l}{ }^{5 T}$ ANNUAL CONFERENCE
 Examples of Data

- Simplest form on the internet is a recap from NOAA
- Gives you the bare bones information
- Limited value
- It's FREE!

Houston, Texas						
Month	Avg. High	Avg. Low	Record High	Record Low	Avg. Precip.	Rain/Snow Days
January	61°	40°	84°	12°	$3.29 \mathrm{in}$.	10 days
February	65°	43°	91°	20°	2.96 in.	8 days
March	71°	50°	91°	22°	2.92 in.	9 days
April	78°	58°	95°	31°	3.21 in.	7 days
May	85°	64°	99°	44°	5.24 in.	8 days
June	90°	71°	103°	52°	$4.96 \mathrm{in}$.	9 days
July	93°	72°	104°	62°	3.60 in.	9 days
August	93°	72°	107°	60°	3.49 in.	9 days
September	88°	68°	109°	48°	4.89 in.	9 days
October	82°	58°	96°	29°	$4.27 \mathrm{in}$.	8 days
November	72°	50°	89°	19°	$3.79 \mathrm{in}$.	8 days
December	65°	42°	85°	7°	3.45 in.	9 days
Choose another city				Source: National Climate Data Center		

Averages are computed from data recorded during the period 1961-1990. Records are through 2000.

NOAA

- Year in Review
- NOAA summarizes highlights of the year
- Good for dramatic deviations from the norm
- Hurricanes / floods / etc.

```
                                    1999 yEar in review
1999 started out with a bang! Several supercells roared
across solleast Texas on New Years Day producng tornadoes
a,
month was much warmer than normal...averaging 6 to 7 degrees
F February was much warmer than normal with tenperatures
Minches below normal. The only significant weather to tocur
during the month was a round of severe thunderstorms which
developed on the
The warmer than normal temperature trend continued in March
\as temperatures averaged around a degree warner than norcmal.
l
the south. A series of thunderstorms moved across the norther
l
l
southwest Houston on the 19th as 4 4 to 5 inches of rain fell
in that area in a 4 hour period.
April was another in a string of unusually warm months.
Nomen
lol
feet of water covering parts of US Highway 5. Temperatures
May was again slightly warmer than normal and rain
very close to normal. The month was puntcuated by several
episodes of severe weather. On May 10th...an early morning
l
Of severe thunderstorms developded just south of...a clus
These storms dumped very heavy rain and golf ball to tol
l
ornal across the regio
A surge of tropical moisture affected southeast Texas in 
June. Scattered showers and thunderstorms affected the regi 
almost daily through the middle of the month. some locally
```



```
l
*)
was in excess of 13 inches. Despite the rainfall and
increased cloud cover....monthly tenperatures accoss the 
```

- PRIMAVERA $2 I^{\text {sT }}$ ANNUAL CONFERENCE

E E CUTE AS PLANNED NOAA

- Year in Summary
- Departures from Normal by month
- Supports claims for "excessive" rainfall type claims
- Still very basic, historic, minimal support for claim, no help for forecasting

PRIMAVERA

Wind

Wind is also predictable (within a range)

Monthly and Annual Wind Roses are available on-line for most major airports

- PRIMAVERA $2 I^{5 T}$ ANNUAL CONFERENCE

E E CUTE AS PLANNED

Info from State

MARCH 2000

Station	$\begin{array}{\|l\|l\|} \hline \text { Avg } \\ \text { Max } \\ \text { Temp } \\ \hline \end{array}$	Dep	$\begin{array}{\|l\|l\|} \hline \text { Avg } \\ \text { Min } \\ \text { Temp } \end{array}$	Dep	$\begin{aligned} & \text { Mean } \\ & \text { Temp } \\ & \hline \end{aligned}$	Dep	$\begin{array}{\|l\|l} \hline \text { Abs } \\ \text { Max } \\ \text { Temp } \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \text { Abs } \\ \text { Min } \\ \text { Temp } \\ \hline \end{array}$	$\begin{gathered} \text { No. of } \\ \text { Days } \\ \text { Precip. } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Pcpn } \\ (\mathrm{ln}) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \% \text { of } \\ & \text { Avg } \\ & \text { Pcpn } \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline{ }^{\prime} r^{\prime s t} \\ 24 \mathrm{hr} \\ P_{c p n} \\ \hline \end{array}$	HDD*	CDD*
Abilene	73.7	4.8	46.9	3.6	60.3	4.2	91	30	4	0.88	65\%	0.33	180	40
Amarillo	63.5	1.9	34.8	2.1	49.1	2.0	82	23	7	4.14	431\%	1.84	482	0
Austin	76.0	4.1	51.4	0.3	63.7	2.2	91	30	11	0.92	49\%	0.62	136	103
Brownsville	83.0	4.6	65.8	6.7	74.4	5.6	96	52	5	2.89	545\%	2.64	1	300
College Station	75.4	4.4	53.5	3.8	64.4	4.1	87	34	13	2.56	99\%	1.14	124	108
Corpus Christi	79.2	3.5	63.2	7.9	71.2	5.6	92	50	2	3.68	391\%	3.66	21	222
Dallas/Ft. Worth	71.2	3.4	50.3	4.7	60.8	4.1	85	37	12	2.92	105\%	1.23	168	47
DelRio	2.0	6.3	56.6	5.7	69.3	6.0	94	41	6	0.28	41\%	0.12	33	174
El Pasa	71.9	2.0	42.4	2.2	57.2	2.1	80	33	1	0.06	21\%	0.06	242	4
Houston	77.9	6.8	54.8	4.8	66.4	5.8	88	34	10	1.35	46\%	0.50	72	126
Lubbock	68.6	2.6	39.0	2.6	53.8	2.6	82	25	6	2.78	312\%	1.28	341	0
Midland	73.7	2.5	44.5	4.3	59.1	3.4	86	27	5	0.76	131\%	0.33	195	18
Port Arthur	76.3	4.8	56.4	5.1	66.4	5.0	82	41	6	2.90	90\%	1.22	70	119
San Angelo	77.8	5.2	48.2	4.7	63.0	4.9	91	30	3	0.77	85\%	0.71	130	75
San Antonio	77.6	4.1	56.4	6.7	67.0	5.3	94	34	8	0.91	60\%	0.31	79	147
Victoria	79.1	5.4	59.0	6.2	69.0	5.7	91	38	3	2.16	139\%	1.96	51	183
Weco	72.1	2.5	50.9	4.1	61.5	3.3	84	35	7	1.49	64\%	0.43	143	48
Wichita Falls	68.8	2.4	43.5	2.9	56.2	2.7	86	31	7	2.51	114\%	1.60	281	12
Shreveport, LA	72.2	3.0	51.2	5.4	61.7	4.2	85	34	13	7.90	210\%	2.36	149	55

*HDD - Heating degree-day: Refer to the Monthly Average charf for a definition $\mathrm{T}=\mathrm{Trace}$ (<0.005")
-CDD - Cooling degre-c-dyy Refer to the Monhly Average chart for a definition M : Infomation not available

Order Summary
Please review your order information below and click CONTINUE to place your order If you need to change quantity, access Shopping Cart

NOTE! You have ordered Online data, which means that you will be able to access
Please take note of the link to these datafifies on the Order Receipt screen and download the data
your workstation ASAP.
These URLs yre periodically deleted from our server.

Product Name	Online Store Price	Quantity	Su
TD Summary of the Day-Online via User Selection CDO00544513 70.00	\$70.00		\$70.00
	SUBTOTAL: 570.00		
SERVICE CHARGE: 5.00			
ORDER TOTAL: 970.00			

(2) Privacy Statement Disclaimer 8

Thank you for using the NNDC Online Store
** YOUR ONLINE DATAFILE ORDER IS READY. PLEASE CLICK HERE ** Please access this data and download to your workstation ASAP. (https://www1/ncde.noaa.gov/pub/orders//0658330134401042903063306.html)

Your Web Order number is 182164.
We STRONGLY recommend that you print this page for your records. You will not be receiving a hardcopy receipt for this order.
You will be receiving an email message confirming this order. If you have questions regarding this order, please call our customer support at (828) $271-4800$ or email to nnd..weborder@noaa.gov. You may reference our help page for further information or questions about your order.
customer support about your order.
** Please register with us to receive information about future NNDC products and services

http://ols.ncdc.noaa.gov/onlinestore.html
http:///ls.s. .cdcc.noaa.gov/onlinestore. html
If you cannot find what you are looking for please visit the NVDS Contact Page
"COOPID,WBANID,Prelim,year,month,day,Tmax,Tmin,Tobs,Tmean,Cdd,Hdd,Prcp,Snow,Snwd, meanTmean,meanTmax,meanTmin,highTmax,lowTmin,sumCdd,sumHdd,sumprcp,sumsno w"
"414307,12918, ,1941,11,1,71,44, ,58,0,7,0,0,0"
" "
"414307,12918, ,1941,11,3,84,55, ,70,5,0,T,0,0"
"414307,12918, ,1941,11,4,75,57, ,66,1,0,0.75,0,0"
"414307,12918, , 1941,11,5,68,48, ,58,0,7,0.02,0,0"
(22 thousand observations not

shown)

```
"414307,12918,*,2003,02,24,61,49, ,55,0,10,0, ,"
"414307,12918,*,2003,02,25,49,40, 45,0,20,0,23 n_ 2003 Data
"414307,12918,*,2003,02,26,44,40, ,42,0,23,0.06, , "
"414307,12918,*,2003,02,27,51,41, ,46,0,19,0, , "
"414307,12918,*,2003,02,28,54,47, ,51,0,14,0, , ,54.9,62.6,47.2,78,33,9,285,2.80,"
```

PRIMAVERA ${ }^{\circ} \mathbf{2 l}{ }^{5 T}$ ANNUAL CONFERENCE
E CUTE AS PLANNED
Convert ASCII to Something Useful

Percent Sunshine

	YRS	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANS
DATA THROUGH 1993	YRS 10	48	48	62	61	64	63	60	62	57	63	49	52	5
BIRMINGHAM C.O.,AL	10	48	50	62 55	63	66	65	59	63	61	66	55	46	58
BIRMINGHAM AP, AL	34	42	53	59	65	63	63	62	63	62	65	55	49	5 !
MONTGOMERY, AL	43	47	53	51	51	52	47	44	39	40	37	33	28	42
ANCHORAGE, AK	38	36	43	51 37		39	34	31	32	26	19	23	20	31
JUNEAU, AK	33	32	32	37 53	54	50	42	37	32	36	35	31	35	$4{ }^{\text {a }}$
NOME, AK	39	40	55	53	54 83	88	86	75	76	81	79	75	73	7 9
FLAGSTAFF, AZ	14	76	74	76 84	83 89	88 93	86 94		85	89	88	84	78	8
PHOENIX, AZ	98	78	80	84 86	89 92	93 93	94 93	85 78	80	87	88	85	79	8 !
TUCSON, AZ	46	80	82	86	92	93	93 97	78 91	91	93	92	87	82	9
YUMA, AZ	42	84	87	90	94	95 62	69	91 73	72	65	65	55	51	6.
FORT SMITH, AR	48	50	55	56	60	62	69 73	71	73	68	69	56	48	6.
LITTLE ROCK, AR	32	46	54	57	62	68	73 81	71 83	73 81	79	74	61	60	7.
NORTH LITTLE ROCK, AR	16	65	65	72	77	72	81	83	81	54	50	44	41	5.
EUREKA, CA.	83	43	46	52	57 85	58	59	55 97	50 96	54 94	88	66	46	7 !
FRESNO, CA	44	47	65	78	85	90 66	95 65	82	83	79	73	74	71	7.
LOS ANGELES C.0., CA	32	69	72	73	70	66	65 94	82 97	83 97	93	91	84	76	88
RFIDDTNG, CA	7.	75	83	84	91	92	94	97	97	93	91	84	10	8

- Several Sources

- Use the whichever one has the data in the most convenient format

Victoria County, TX Time Zone : CST(GMT -6)						
1/1/2003 to 2/1/2003			28.796000 N/96.970943 W			
Date	Day of Week	1/2 Hour before sunrise	$\begin{array}{\|\|c\|} \hline 1 / 2 \text { Hour } \\ \text { after } \\ \text { sunset } \end{array}$	Sunrise to sunset Time(H:M)	Sunrise	Sunset
1/1/2003	Wednesday	06:51 am	06:11 pm	10:20	7:21 am	5:41 pm
1/2/2003	Thursday	06:51 am	06:12 pm	10:21	7:21 am	5:42 pm
1/3/2003	Friday	06:51 am	06:13 p	10:22	7:21 am	5:43 pm
1/4/2003	Saturday	06:51 am	06:13 pm	10:22	7:21 am	5:43 pm
1/5/2003	Sunday	06:52 am	06:14 pm	10:22	7:22 am	5:44 pm
1/6/2003	Monday	06:52 am	06:15 pm	10:23	7:22 am	5:45 pm
1/7/2003	Tuesday	06:52 am	06:16 pm	10:24	7:22 am	5:46 pm
1/8/2003	Wednesday	06:52 am	06:16 pm	10:24	7:22 am	5:46 pm
1/9/2003	Thursday	06:52 am	06:17 pm	10:25	7:22 am	5:47 pm
1/10/2003	Friday	06:52 am	06:18 pm	10:26	7:22 am	5:48 pm
1/11/2003	Saturday	06:52 am	06:19 pm	10:27	7:22 am	5:49 pm
1/12/2003	Sunday	06:52 am	06:20 pm	10:28	7:22 am	5:50 pm
1/13/2003	Monday	06:52 am	06:20 pm	10:28	7:22 am	$5: 50 \mathrm{pm}$
1/14/2003	Tuesday	06:52 am	06:21 pm	10:29	7:22 am	5:51 pm
1/15/2003	Wednesday	06:52 am	06:22 pm	10:30	7:22 am	5:52 pm
1/16/2003	Thursday	06:52 am	06:23 pm	10:31	7:22 am	5:53 pm
1/17/2003	Friday	06:51 am	06:24 pm	10:33	7:21 am	5:54 pm
1/18/2003	Saturday	06:51 am	06:24 pm	10:33	7:21 am	5:54 pm
1/19/2003	Sunday	06:51 am	06:25 pm	10:34	7:21 am	5:55 pm
1/20/2003	Monday	06:51 am	06:26 pm	10:35	7:21 am	5:56 pm
1/21/2003	Tuesday	06:51 am	06:27 pm	10:36	7:21 am	5:57 pm
1/22/2003	Wednesday	06:50 am	06:28 pm	10:38	7:20 am	5:58 pm
1/23/2003	Thursday	06:50 am	06:29 pm	10:39	7:20 am	5:59 pm
1/24/2003	Friday	06:50 am	06:29 pm	10:39	7:20 am	$5: 59 \mathrm{pm}$
1/25/2003	Saturday	06:49 am	06:30 pm	10:41	7:19 am	6:00 pm
1/26/2003	Sunday	06:49 am	06:31 pm	10:42	7:19 am	$6: 01 \mathrm{pm}$

PRIMAVERA $2{ }^{\text {I }}$ TNNUAL CONFERENCE
E C U T E A S P L A N N E D
E C U T E A S P L A N N E D

Putting it all together...(a really giant spreadsheet)
Houston Hobby Historical Weather
Data 1941 thru 2002

0.175 Observation								
Number of Observations	Average - Precipitation / Rain Days	Total Preciptation	Rain Days	Average - Inches / Observations	Rain Days	Probability	0.185	Day
21086	299.1257387	2942.159	3644	51.31	97		130	
59	1.30	13.04	10	0.22	1	16.95\%	0	Jan-1
59	0.67	8.04	12	0.14	0	20.34\%	1	Jan-2
59	0.44	4.39	10	0.07	0	16.95\%	0	Jan-3
59	0.46	5.04	11	0.09	0	18.64\%	1	Jan-4
59	0.56	7.29	13	0.12	0	22.03\%	1	Jan-5
59	0.66	10.57	16	0.18	1	27.12\%	1	Jan-6
59	0.54	8.66	16	0.15	0	27.12\%	1	Jan-7
59	0.45	4.08	9	0.07	0	15.25\%	0	Jan-8
59	0.86	11.20	13	0.19	1	22.03\%	1	Jan-9
59	0.65	6.52	10	0.11	0	16.95\%	0	Jan-10

- PRIMAVERA $2 I^{5 T}$ ANNUAL CONFERENCE
)ECUTE AS PLANNED

Precipitation in Inches by day by year

Observation	61	151	151	152	151	181	365	366	365	365	365	366
Day	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952
Jan-1		0.02	0	3.61	0	0	0.54	0	0.01	3.22	2.27	0.06
Jan-2		0	0	0.18	0	0	0.07	0	0.7	0	0.08	0.04
Jan-3		0.13	0	0	0.01	0	0	0	0	0	0.12	0.1
Jan-4		0	0	0	0	1.86	0	0	0	0.14	0	0.08
Jan-5		0	0	0	0.12	0.1	0.09	0	0	0.09	0	0
Jan-6		0.19	1.31	0.09	0.19	0.01	0.01	0	0	0.05	0.43	0
Jan-7		0.43	0.16	0.38	0	0.43	0.22	0.01	0	0	0	0
Jan-8		0	0	0	0	0.49	0.13	0.01	0	0	0	0
Jan-9		0.11	0	0	0	0	0.48	0	0	0	0	0
Jan-10		0	0	0	0	0.4	0.21	0	0	0.62	0.04	0

Day	Rain Days = Days with more than Avg rain days (1947 thru 1997)							0.10 inches of Rain 62.4 Days				1952	1953	1954	1955	1956	1957	1958
	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	n							
1/1	0	0	0	1	0	0	1	0	0	1	1	0	0	0	0	0	0	0
1/2	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
1/3	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0
1/4	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0
1/5	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	1
1/6	0	1	1	0	1	0	0	0	0	0	1	0	0	0	0	0	0	1
1/7	0	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0
1/8	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	0	0	0
1/9	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0

PRIMAVERAㅇ́ $\mathbf{I r}^{\text {T}}$ ANNUAL CONFERENCE
 E CUTE AS PLANNED

0.01 inches - minimal rainfall

Day	$\begin{aligned} & \text { Rain Days = Days with more than } \\ & \text { Avg rain days (1947 thru 1997) } \end{aligned}$							$\begin{gathered} 0.01 \\ 91 \\ \\ 1948 \end{gathered}$	inches of Rain Days			2003
	1941	1942	1943	1944	1945	1946	1947		1949	2001	2002	
1/1	0	1	0	1	0	0	1	0	0	1	1	0
1/2	0	0	0	1	0	0	1	0	1	0	0	0
1/3	0	1	0	0	0	0	0	0	0	0	0	0
1/4	0	0	0	0	0	1	0	0	0	0	0	0
1/5	0	0	0	0	1	1	1	0	0	0	1	0
1/6	0	1	1	1	1	0	0	0	0	0	0	0
1/7	0	1	1	1	0	1	1	0	0	1	0	0
1/8	0	0	0	0	0	1	1	0	0	0	0	0
1/9	0	1	0	0	0	0	1	0	0	0	0	0
1/10	0	0	0	0	0	1	1	0	0	1	0	0

Primavera' 2l"ANNUAL Conference Determining Probability of Rain

Day	Number of Observations	Average Precipitation	Total Preciptation	Rain Days
Jan-1	59	0.22	13.04	19
Jan-2	59	0.14	8.04	19
Jan-3	59	0.07	4.39	15
Jan-4	59	0.09	5.04	16
Jan-5	59	0.12	7.29	21
Jan-6	59	0.18	10.57	23
Jan-7	59	0.15	8.66	20
Jan-8	59	0.07	4.08	15
Jan-9	59	0.19	11.20	15
Jan-10	59	0.11	6.52	16
Jan-11	59	0.09	5.26	14
Jan-12	59	0.17	10.15	20
Jan-13	59	0.12	6.85	19
Jan-14	59	0.11	6.23	16
Jan-15	59	0.05	2.91	9

PRIMAVERA

PRIMAVERA

 ```E C U T E A S P L A N N E D```
 Available Work Hours

Date	Hours Min	Decimal Hours	Sunshine	Sunshine in Dec. Hrs	Work Day
$6 / 25 / 2003$	1358	13.97	72.00%	10.06	1
$6 / 26 / 2003$	1358	13.97	72.00%	10.06	1
$6 / 27 / 2003$	1358	13.97	72.00%	10.06	1
$6 / 28 / 2003$	1358	13.97	72.00%	10.06	0
$6 / 29 / 2003$	1358	13.97	72.00%	10.06	0
$6 / 30 / 2003$	1358	13.97	72.00%	10.06	1
$7 / 1 / 2003$	1357	13.95	80.00%	11.16	1
$7 / 2 / 2003$	1357	13.95	80.00%	11.16	1
$7 / 3 / 2003$	1357	13.95	80.00%	11.16	1
$7 / 4 / 2003$	1356	13.93	80.00%	11.14	0
$7 / 5 / 2003$	1356	13.93	80.00%	11.14	0
$7 / 6 / 2003$	1354	13.90	80.00%	11.12	0
$7 / 7 / 2003$	1354	13.90	80.00%	11.12	1
$7 / 8 / 2003$	1353	13.88	80.00%	11.10	1
$7 / 9 / 2003$	1353	13.88	80.00%	11.10	1
$7 / 10 / 2003$	1353	13.88	80.00%	11.10	1

Sunshine

Average Percent Possible Sunshine Obtained from NOAA
Data for nearest station - Corpus Christi

Average Days of Precipitation, .01 Inches or More Obtained from NOAA
Data for nearest station - Victoria Airport

Normal Monthly Precipitation, Inches Obtained from NOAA Data for nearest station - Victoria Airport

51 Years of Data		32 Years of Data	Cum	30 Years of Data	

PRIMAVERA

PRIMAVERA

Average Rain Days by Month From NOAA

Interpreting the Data

- Long hours of daylight \& warm weather allow work to resume work sooner after heavier rain in the summer months
- Shorter days, cool temperatures, and cloud cover prevent work from resuming as quickly in winter months even with less measurable rain

Correlate weather and work days

- For example:
- USACE records over many years indicate 19 days are worked on average in April
- And 212 days are worked on average in any given year
- Use precipitation, cloud cover, probabilities to create a calendar

PRIMAVERA $2{ }^{1{ }^{57}}$ ANNUAL CONFERENCE
 E C U TE AS PLANNED
 P3 Calendar Non-Work

PRIMAVERA

Create Non-Work Calendar

Sunday
**** Note: The calendar above shows the "expected" rain days in a typical year. This is not
the actual weather that occurred during this year. Includes 91 predicted rain days and 60
"too wet" days based upon probabilities derived from weather observations from 1941 to
2003 at Hobby Airport, Houston.

PRIMAVERA $2{ }^{1{ }^{5}}$ ANNUAL CONFERENCE

```
E C U TE A S PLANNED
```


Note from Previous Calendar

**** Note: The calendar above shows the "expected" rain days in a typical year. This is not the actual weather that occurred during this year. Includes 91 predicted rain days and 60 "too wet" days based upon probabilities derived from weather observations from 1941 to 2003 at Hobby Airport, Houston.

- 365 less "rain days" does not equal the average number of days available to work because it may not be possible to resume work for several days after a rain. "TOO WET"
- You have to interpret and determine how many days after a rain are non-work for each month to fit the historic average of non-work vs work days for each month.

Hours Available to Work

- The number of hours available to work varies significantly from month to month.
- Not an easy way to show this difference in P3 month to month in a single calendar
- Complex formulas trying to calculate drying time for various soil types, temperature, humidity, evaporation...
- Too complex, not practical, requires a PhD to interpret or perform the calculation

Inserting delays or potential delays

- By breaking an activity or logic chain and inserting a delay event you can now accurately present the true impact of moving work from one period or season into another season.

Simple Demonstration of Impact

July	August	Sept	Oct	Nov	Dec
24	23	21	19	14	11

Simple Demonstration of Impact

July	August	Sept	Oct	Nov	Dec
24	23	21	19	14	11

| $20 \mathrm{wd}, 26 \mathrm{~cd}$ |
| :---: | :---: |
| Activity 1 |\rightarrow Activity 27

Delay Event was 60 days but because it pushed Activity 2 from Summer into the Fall which caused its Calendar Day duration to increase from 27 days to 42 days.

Simple Demonstration of Impact

60 days for delay event
+15 days due to shift seasons 75 Calendar Days

60 Day Delay Event Actually Requires 75 Calendar Day Adjustment to Completion Date to Fully Compensate the Contractor for the
Delay

- Acceptable because the method is based upon best information available
- Accounts for variations in seasons and days
- No better method readily available

How this could be better...

- Not only are all months not created equal, not all days are created equal...
- Software could allow us not only to identify work vs. non-work days but also work hours for each specific day or at least for each month

